Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Bohari M. Yamin,*
Mohammad B. Kassim,
M. Sukeri M. Yusof and Nabihah M. Shah

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.064$
$w R$ factor $=0.159$
Data-to-parameter ratio $=17.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-Benzoyl- \mathbf{N}^{\prime}-ethylthiourea

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$, the ethyl and benzoyl groups are both cis with respect to the S atom across the thiourea $\mathrm{C}-\mathrm{N}$ bonds, in contrast with the cis-trans arrangement seen in the arylbenzoylthiourea analogues. The crystal packing is stabilized by weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which form a one-dimensional polymeric chain along the a axis.

Comment

The structural dimensions of the title compound, (I), are in normal ranges (Allen et al., 1987) and in agreement with those of other benzoylthiourea derivatives (Yamin \& Yusof, 2003a; Shanmuga Sundara Raj et al., 1999). However, the presence of an ethyl substituent at the N 2 atom allows the benzoyl group to be in the cis position with respect to the thio group across the C8-N1 bond (Fig. 1), in contrast to the trans position observed in most N-aryl- N^{\prime}-benzoylthioureas (Yamin \& Yusof, 2003a,b).

The central carbonyl-thiourea moiety, including the ethyl group ($\mathrm{S} 1 / \mathrm{C} 8 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10$), is essentially planar, with a maximum deviation of 0.276 (5) \AA for the C 10 atom from the mean plane. The mean plane of this moiety makes an angle of 31.5 (2) ${ }^{\circ}$ with the C1-C6 phenyl group.

In the crystal structure of (I), the molecules are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts (Table 2) to form a onedimensional polymeric chain along the a axis (Fig. 2).

Figure 1
A view of the molecular structure of (I), with displacement ellipsoids drawn at the 50% probablity level.

Received 20 February 2004
Accepted 8 March 2004
Online 24 March 2004

Experimental

A solution of ethylamine ($2.25 \mathrm{~g}, 0.05 \mathrm{~mol}$) in ethanol (50 ml) was added dropwise to an equimolar amount of benzoyl isothiocyanate in ethanol $(50 \mathrm{ml})$. The solution was refluxed for about 2 h and then poured into a beaker containing ice. After 2 d , white needle-shaped crystals of (I) were obtained which were suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=208.28$
Orthorhombic, Pna2 ${ }_{1}$
$a=10.041(5) \AA$
$b=9.389(5) \AA$
$c=11.450(6) \AA$
$V=1079.5(9) \AA^{3}$
$Z=4$
$D_{x}=1.282 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
Absorption correction: none
4704 measured reflections
2171 independent reflections

> Mo $K \alpha$ radiation
> Cell parameters from 1268 \quad reflections
> $\theta=2.8-26.9^{\circ}$
> $\mu=0.27 \mathrm{~mm}^{-1}$
> $T=273(2) \mathrm{K}$
> Plate, colourless
> $0.45 \times 0.24 \times 0.05 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.159$
$S=1.10$
2171 reflections
127 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0691 P)^{2}\right.$
$+0.4025 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

S1-C8	$1.623(4)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.399(4)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.209(4)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.312(4)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.367(5)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.446(6)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	$120.4(3)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$108.0(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$121.6(4)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$123.7(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.13	$2.979(4)$	169
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots 1^{\mathrm{i}}$	0.86	2.40	$3.195(4)$	154

Symmetry code: (i) $x-\frac{1}{2},-\frac{1}{2}-y, z$.

After their location in a Fourier difference map, all H atoms were positioned geometrically and allowed to ride on their parent C or N

Figure 2
A packing diagram for (I), viewed down the c axis. Dashed lines denote the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.
atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ 1.2 or $1.5 U_{\mathrm{eq}}(\mathrm{C})$, or $1.2 U_{\mathrm{eq}}(\mathrm{N})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors would like to thank the Malaysian Government and Universiti Kebangsaan Malaysia for IRPA research grant No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Shanmuga Sundara Raj, S., Puviarasan, K., Velmuragan, D., Jayanthi, G. \& Fun, H.-K. (1999). Acta Cryst. C55, 1318-1320.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yamin, B. M. \& Yusof, M. S. M. (2003a). Acta Cryst. E59, o151-o152.
Yamin, B. M. \& Yusof, M. S. M. (2003b). Acta Cryst. E59, o340-o341.

